GPSMirror: Expanding Accurate GPS Positioning to Shadowed and Indoor Regions with Backscatter

Huixin Dong¹, Yirong Xie¹, Xianan Zhang¹, Wei Wang^{1*}, Xinyu Zhang² and Jianhua He³

¹School of Electronic Information and Communication

HUAZHONG UNIVERSITY SCIENCE AND TECHNOLOG

²Electrical and Computer Engineering

³School of Computer Science and electrical Engineering

GPS services fail in shadowed region

Conventional GPS provides localization with high error (hundreds of meters^[1]) or even cannot localization^[2] in these shadowed regions.

Urban Canyon

Flyover Shadow

Gas/Dust Factory

K.Chen and G.Tan. 2018. BikeGPS: Accurate Localization of Shared Bikes in Street Canyons via Low-Level GPS Cooperation. MobiSys '18.
S.Nirjon, J.Liu, G.DeJean, B.Priyantha, Y.Jin and T.Hart. 2014. COIN-GPS: indoor localization from direct GPS receiving. MobiSys'14.

GPS relays are hard to deploy

Our Idea: Ultra-low-power backscattering

Design a uW-level backscatter tag that provides comparable coverage to commercial relays.

New positioning opportunities of backscattering GPS

The relayed GPS signals cannot collaborate with non-relayed GPS signals since they contain different propagation delay. The scattered and non-scattered GPS signals can collaborate to provide better positioning service.

Requirements on scattering the GPS signals

Existing backscatter devices

Existing tunnel diode-based backscatters RF switch-based backscatters Ambient Backscatter WISP Platform SIGCOMM'13 **TIE'08** Can we design a backscatter system to meet all the requirements?

Challenge: Bandwidth

Design 1: Matching Parasitic Parameters.

Design 2: High-precision impedance control.

Challenge: Sensitivity

Reported threshold for injectionlocked amplify of the SOTA tunnel diode-based backscatter:

-90 dBm ~ -100 dBm

Tunnel Emitter MobiCom'20

GPS signals at the ground

~ -125 dBm

Tunnel diode amplifier

Our insight:

Minimizing the circuit loss, noise and maximize the signal reception.

Challenge: Sensitivity

Design 1:

Reduce the return loss caused by components solder.

Challenge: Sensitivity

Design 2: Search the minimum noise operation point

Design 3: Customized radiation pattern for better reception

Localization under inadequate satellites

Differential positioning for accuracy improvement

Implementation and hardware performance

~ 126uW power consumption

-125dBm Sensitivity with variance less than 1.3dB.

0-30dB adjustable gain.

Compatible with smartphones.

Coverage performance

Urban Canyon

27.7 m away from the tag with about 4 dB gain in C/N_0

Flat Room

A 20m×14m room can be covered by a single GPSMirror tag with > 3dB gain in C/N₀

Localization accuracy

Static Localization Error

Dynamic Localization Error Indoor

Thanks! Q&A