
GPSense: Passive Sensing with Pervasive GPS Signals

Huixin Dong†∗, Minhao Cui‡∗, Ning Wang†, Lili Qiu♦, Jie Xiong♦‡, Wei Wang†★
†Huazhong University of Science and Technology

♦Microsoft Research Asia, ‡University of Massachusetts Amherst
{huixin,ningw,weiwangw}@hust.edu.cn, {minhaocui,jxiong}@cs.umass.edu, liliqiu@microsoft.com

ABSTRACT
Wireless sensing is gaining increasing attention from both
academia and industry. Various wireless signals, such as Wi-
Fi, UWB, and acoustic signals, have been leveraged for sens-
ing.While promising inmany aspects, two critical limitations
still exist: a) limited sensing coverage; and b) the requirement
for dedicated sensing signals, which may interfere with the
original function of the wireless technology. To address these
issues, we propose to utilize GPS signals for sensing, as GPS
signals are already pervasive and emitted from satellites 24/7
at pre-allocated frequency bands, causing no interference. To
make GPS sensing possible, we reconstruct signals with am-
plitude and phase information which is critical for sensing
using the raw measurements reported by commercial GPS
receiver module. We also develop sensing models to tailor
the unique properties of GPS signals such as extremely long
transmission distance. Finally, we introduce the concept of
distributed sensing and design signal processing methods
to fuse signals from multiple satellites to improve sensing
performance. With all these designs, we prototype the first
GPS wireless sensing system on commercial GPS receiver
modules. Comprehensive experiments demonstrate that the
proposed system can realize meaningful sensing applications
such as human activity sensing, passive trajectory tracking,
and respiration monitoring.
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1 INTRODUCTION
Since Marconi’s first wireless transmission in 1894, wireless
technologies have progressively become an indispensable
part of our everyday life. In addition to their primary com-
munication function, exemplified by the prevalent Wi-Fi
and 4G services [7], wireless signals traditionally used for
communication (e.g., Wi-Fi) have recently been exploited
for sensing purposes [27, 47, 49, 56]. The basic principle be-
hind passive wireless sensing is that signal propagation gets
affected by human motions, which can be inferred by analyz-
ing the induced signal variations. The human motions range
from relatively large motions such as hand gestures [35, 54]
to subtle motions such as respiration-induced chest move-
ments [47, 52]. In wireless sensing, wireless signals rather
than sensors are used for sensing and the contact-free nature
makes it appealing in a lot of real-life scenarios.
Diverse wireless signals have been exploited for sensing

including Wi-Fi [30, 45], LTE [11, 12, 36], RFID [49, 60],
mmWave [15, 26], UWB [54, 56], LoRa [47, 48], sound [24, 44]
and Terahertz [4, 16]. While promising in many aspects, sev-
eral issues still exist in current wireless sensing systems: i)
The sensing coverage is still limited. The sensing coverage of
one Wi-Fi AP is just a few meters [52]. Although recent stud-
ies proposed to use LTE [12] and LoRa signals [47] to extend
the sensing coverage to kilometers, it is still much smaller
than the coverage of a satellite. Also, around 30% areas are
still not covered by LTE stations [17] in the US and this
number can be even larger in developing countries. ii) Dedi-
cated sensing signals need to be transmitted which severely
affect the original communication function. Take popular
Wi-Fi sensing as an example. 100-1000 dedicated packets per
second need to be transmitted for sensing [13, 50], which
greatly degrade the data rate of ongoing data transmission.
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GNSS satellites
• L1: 1575.4 MHz;
• L5: 1227.6 MHz;
• Continuous wave;
• Wave 24/7 …

GPS signals
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raising hand”

GPSense

Figure 1: The sensing system based on pervasive and
interference-free signals from GNSS satellites.

To address the above challenges, the ideal wireless tech-
nology to be exploited for sensing is GPS (Global Positioning
System). One GPS satellite can cover 1/8 of Earth and 95% of
areas on Earth are covered by at least 4 GPS satellites [10].
Another unique advantage is that GPS satellites continu-
ously emit signals 24/7. Therefore, no dedicated transmis-
sions are required if we utilize GPS for sensing. Surprisingly,
we did not find any research utilizing GPS signals for passive
sensing (e.g., sensing the human’s activities or tracking the
human’s moving trajectories). Note that passive sensing is
different from conventional GPS localization/sensing which
is active. While in conventional GPS localization/sensing, a
GPS-equipped device needs to move together with the tar-
get, GPSense does not require the target to wear/hold a GPS
receiver and the GPS receiver is stationary. While promising,
multiple challenges need to be addressed before we can use
GPS signals for passive sensing.
• The first challenge is that most commercial GPS receiver
modules do not report the information required for wire-
less sensing, i.e., the signal amplitude and phase infor-
mation. Instead, only carrier-to-noise-density ratio and
pseudorange are reported.

• Existing wireless sensing models (e.g., the Fresnel zone
model) do not apply to GPS signals due to the extremely
long distance between the satellite and target, which is
orders of magnitude larger than that of existing sensing
modalities. What makes it even more challenging is that
GPS satellites move at a high speed with respect to the
human target on Earth.1 In comparison, Wi-Fi AP and
LTE towers are stationary with respect to the Earth.

• There are many GNSS (global navigation satellite system)
satellites in the Medium Earth Orbit (MEO) and Geosyn-
chronous Earth Orbit (GEO). A GNSS receiver can receive
signals from over 30 satellites at the same time from vari-
ous GNSS satellites including GPS, Galileo (Europe) and
BeiDou (China) moving at different speeds. As the nav-
igation satellite moves faster than Earth’s rotation, the

1The GPS satellite moves faster than Earth’s self-rotation.

satellites a receiver can capture signals from vary dur-
ing a day. These factors make sensing using GPS signals
and more generally GNSS signals more complicated than
existing wireless sensing modalities.
To address the first challenge, we propose to reconstruct

the original GPS signals including the amplitude and phase
from the reported raw measurements at commodity GPS
module to enable sensing. However, the reported measure-
ments cannot be directly utilized for signal reconstruction
due to inherent errors stemming from satellite movements
and atmospheric delay [38]. We apply the measured Doppler
shift and satellite ephemeris data publicly available to ad-
dress the error due to satellite movements. However, after
the errors are corrected, fully recovering the original signals
is still challenging because the GNSS satellites also modu-
late encrypted messages on the signals [46]. Fortunately, for
sensing, we do not care about the absolute signal amplitude
and phase but rather the variation of signal amplitude and
phase. As long as the amplitude and phase are stable, we can
extract the variations for sensing.

To overcome the second challenge, we leverage the unique
long propagation distance of GPS signals to develop the sens-
ing model. Specifically, because of this long transmission
distance, GPS signals from the same satellite can be treated
as parallel waves with similar signal strengths upon reaching
the sensing target and receiver. Building upon this fact, we
develop two sensing models for GPS: the diffraction model
and the reflection model. For the diffraction model, we adopt
the Geometrical Theory of Diffraction (GTD) to analyze the
interaction between such parallel signals and the blocking
objects (human target). This model is independent of the
transmitter location, and the movements of satellites only
affect one variable in the model: the incident angle of the
signal. This eliminates the need of knowing the transmitter’s
location in conventional wireless sensing models, which in
our case keeps changing, for modelling. The transmitter’s
location plays a key role in determining the Fresnel zones
in the conventional Fresnel zone sensing model [53]. For
the reflection model, different from conventional wireless
sensing models in which the signals reaching the target and
the receiver are non-parallel, the GPS signals reaching the
target and receiver can be considered parallel. What is more
important is that the signal incident angle reported at the
GPS receiver does not change with the target motion be-
cause the displacement caused by target motion is too small
to change the incident angle owing to the long signal propa-
gation distance. This unique property is utilized to quantify
the relationship between signal amplitude/phase variation
and target movement.
To address the last challenge, we propose the distributed

sensing concept leveraging the large number of satellites
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distributed at different locations on the orbits. We obtain
multiple unique observations: i) The signals from satellites
located on the left (right) side of the human target exhibit
better performance for sensing movements on the left (right)
side of the body; ii) The signals from satellites with lower
elevation angles achieve a better performance for sensing the
movements of the target’s lower body part (e.g., gait tracking).
The signals with higher elevation angles achieve better perfor-
mance for sensing the movements of the target’s upper body
part (e.g., chest movement for respiration monitoring); iii) As
GPS signals are parallel when they arrive at Earth, the signals
from satellites on the same side of the target with respect to
the receiver will be influenced by the target’s movements
based on the diffraction model. Conversely, the signals from
satellites on the opposite side of the target will be influenced
by movements based on the reflection model. The informa-
tion from multiple satellites is further fused to improve the
sensing accuracy and robustness.
With all the challenges addressed, we realize GPSense,

the first passive wireless sensing system based on GPS sig-
nals. Without any hardware modifications, GPSense is able
to achieve an accuracy of 94% in recognizing eight human
activities. Besides, it can also achieve accurate passive tra-
jectory tracking and respiration monitoring.
We conduct comprehensive experiments to validate the

system’s robustness under various conditions including dif-
ferent times in a day, different weather conditions, different
targets, and diverse environments.We also successfully make
the proposed GPS sensing work in indoor environments with
the help of a cheap GPS repeater ($3.5) [1]. GPSense is im-
plemented on multiple mainstream GPS receiver modules
used in smartphones and smartwatches. To summarize, we
make the following contributions:
• We are the first to harness GPS and more general GNSS
signals for passive sensing, wherein the target does not
carry a GPS (GNSS) receiver. We believe this new sensing
modality enables truly wide-area wireless sensing which
will trigger a large range of new sensing applications.

• As sensing just cares about signal amplitude/phase vari-
ations rather than the absolute readings, we utilize the
reported high-level measurements from commercial GPS
modules to reconstruct the GPS (GNSS) signals which are
not exactly the same as the original ones but are sufficient
for sensing.

• Based on the unique characteristics of GPS signals, we
present two sensing models tailored for GPS sensing.
These models quantify the relationship between the target
movement and corresponding signal variations, laying
the theoretical foundation for GPS sensing.

• Based on the unique observations such as the satellites
with higher elevation angles are more suitable for sensing

the upper part of the human body, we propose the con-
cept of distributed sensing to fuse signals from multiple
satellites to improve the sensing performance.

• We implement GPSense on commercial GPS receiver mod-
ules and validate the system’s effectiveness and robust-
ness with representative sensing applications (i.e., activity
recognition, trajectory tracking, and respiration monitor-
ing) under various conditions. We also show that with a
cheap GPS repeater ($3.5), we can extend GPS sensing to
indoor environments.

2 GPS SIGNAL PRELIMINARY
We take GPS as an example to introduce the Global Navi-
gation Satellite System. GPS comprises 31 satellites on the
MEO, continuously emitting Radio-Frequency (RF) signals to
facilitate navigation functions for billions of devices. Smart-
phones, drones, and vehicles can receive these signals and
determine their positions on Earth through triangulation.
The triangulation method requires GPS receivers to receive
signals from a minimum of four GPS satellites. Signals from
multiple satellites are available nearly anywhere and at any
time. Besides, GPS satellites transmit signals at regulated
frequency bands (GPS L1 Band at 1575.42 MHz and L5 Band
at 1227.6 MHz). Therefore, GPS signals possess the potential
as sensing signals for pervasive coverage and at the same
time do not affect existing wireless communication signals
such as Wi-Fi and LTE.
GPS receiver module embedded in commercial devices,

e.g., smartphones, typically only reports important measure-
ments related to localization to optimize computational re-
source usage and minimize data transmission cost. The most
frequently reported measurements are as follows:
Carrier-to-noise-density ratio (𝐶/𝑁0). This measurement
measures the ratio of the power of a signal carrier to the noise
power in a 1-Hz bandwidth [22]. This is a key parameter in
the analysis of GPS receiver performance. This measurement
can be expressed as

𝐶/𝑁0 = 10𝑙𝑜𝑔10 (
𝑃𝑐

𝑃𝑛/𝐵
), (1)

where 𝑃𝑐 is the power of the GPS carrier, 𝑃𝑛 is the power of
the noise and 𝐵 is the bandwidth.
Pseudorange. The pseudorange is a time-of-flight measure-
ment calculated using the Coarse Acquisition (C/A)-Code,
which corresponds to the distance between the receiver an-
tenna and the satellite antenna, including the receiver and
satellite clock offsets and other biases such as atmospheric
delays. Pseudorange 𝜌 can be expressed as

𝜌 = 𝑟 + 𝑐𝑡𝑏 + 𝜀𝜌 , (2)
where 𝑟 is the geometric range between the receiver and the
satellite, 𝜀𝜌 is the measurement error, 𝑐 is the light speed,
and 𝑡𝑏 is the clock bias of the receiver.
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Figure 2: Signal comparison among the reported mea-
surement, processed measurement, and the extracted
fine-grained signal phase.

Accumulated Carrier Phase. Commercial GPS receivers
can acquire the accumulated carrier phase as a measurement,
which keeps accumulating since the GPS receiver starts. The
carrier phase measurements Φ can be expressed as

Φ =
𝑟0

𝜆
+
∫ 𝑡

0
𝑓𝐷𝑡𝑑𝑡 + 𝜀Φ, (3)

where 𝑓𝐷 is the frequency shift caused by Doppler effect, 𝑟0
is the initial geometric range between the receiver and the
satellite, and 𝜀Φ is the measurements errors. Note that phase
measurements in some GPS receiver systems are reported in
meters. For example, Android Smartphones report the carrier
phase measurements as Accumulated Delta Range, which is
actually 𝜆Φ.

These measurements play a pivotal role in the navigation
application of the commercial device, enabling the computa-
tion of its location.

3 GPSENSE MODEL
In this section, we take the GPS signal as an example to
illustrate how to reconstruct the original signals based on
the reportedmeasurements. Thenwe present the two sensing
models for GPS signals.

3.1 GPS Signal Reconstruction
As mentioned in Sec. 2, the commercial devices can only
access the reported measurements from the GPS module, and
these measurements can not be directly used for sensing due
to multiple reasons: i) Measurement errors. Errors are caused
by various factors such as weather and clock drift during
the long-range (about 20,000 km) propagation. The signal
variation caused by the sensing target can be buried in the
variation caused by errors without being detected. ii) Coarse
channel state information: themeasurements are reported for
calculating the distance between satellites and the receiver
and the measurements are too coarse to be utilized for fine-
grained sensing (e.g., respiration monitoring). To extract the
fine-grained channel state variation for sensing, we design a
signal reconstruction scheme to reconstruct the original GPS
signals using the reported GPS measurements.

Measurement error correction. In this step, we pre-
process the GPS-reported measurements to eliminate errors
during the long-range propagation. Specifically, there are
two factors that cause errors in the GPS measurements: i)
movements of the satellite; and ii) clock error of the GPS re-
ceiver. These factors should be addressed properly to reduce
their influence on sensing.

First of all, to eliminate the influence of GPS movements,
we exploit the publicly accessible ephemeris data, which
reports the locations of the satellites. We use the satellite’s
location and orbit information to estimate the movement sta-
tus of each satellite. After we obtain the movement status of
the satellite, we calculate the effect of the Doppler frequency
shift on the signal phase caused by the movement, and then
we compensate the phase error caused by Doppler frequency
shift (𝑓𝐷 ) in the accumulated carrier phase measurements.
To mitigate the effect of clock errors on pseudorange (𝑡𝑏 ),
we employ the weighted least squares method [22]. This
method involves multiple synchronized satellites to calcu-
late the clock bias between the satellites and the receiver,
enhancing the precision of the measurements [29].
Basic signal parameter calculation. In the second step,
we combine these pre-processed measurements to calcu-
late the basic signal parameters, i.e., amplitude 𝐴𝑚𝑝 (𝑡) and
phase 𝜙 (𝑡). Then, the GPS signal is reconstructed for sensing.
𝐴𝑚𝑝 (𝑡) can be estimated as

𝐴𝑚𝑝 (𝑡) =
√︁
𝑃𝑛10(𝐶/𝑁0 )/10, (4)

where 𝑃𝑛 = 𝑘𝑇 is the noise power in a 1-Hz bandwidth [22],
𝑘 is the Boltzmann constant in Joules per Kelvin, 𝑇 is the
temperature in Kelvin, and 𝐶/𝑁0 is the reported Carrier-to-
noise-density ratio. The carrier phase 𝜙 of the GPS signal
can be expressed as

𝜙 (𝑡) = 2𝜋 ( dΦ
d𝑡

− 𝑓𝐷𝑡 +
𝜌 − 𝑐𝑡𝑏

𝜆
), (5)

where Φ is the reported accumulated carrier phase, 𝜌 is the
reported pseudorange, 𝑓𝐷 is Doppler frequency shift caused
by the satellite movement, 𝑡𝑏 is the clock bias of the receiver.
After obtaining the amplitude and phase values, we can re-
construct the GPS signal at timestamp 𝑡 as

S(𝑡) = 𝐴𝑚𝑝 (𝑡)𝑒 𝑗𝜙 (𝑡 ) . (6)
To demonstrate the sensing capability of the reconstructed

GPS signal, a benchmark experiment is conducted, wherein
a human target is asked to move around the GPS receiver
module, inducing variations in the received signals. Figure 2
depicts the reported pseudorange, the corrected pseudor-
ange and the reconstructed signal phase. It is evident that
the reported pseudorange does not contain meaningful in-
formation due to the aforementioned measurement errors.
Moreover, even with the correction of the reported pseu-
dorange, its signal variation fails to show the fine-grained
channel changes induced by the target’s movement around
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Figure 3: A sensing target moves away from the LoS
path between the satellites and the GPS receiver.

the receiver, as the pseudorange measurement is designed
for coarse-grained distance estimate. Ultimately, our pro-
posed method successfully yields fine-grained signal phase
variations caused by the target’s movement. Without loss of
generality, we employ the reconstructed signals to represent
the received GPS signals in subsequent sections for sensing.
Besides, the reconstruction process is similar for other GNSS
satellites such as BeiDou.

3.2 The Reflection of GPS Signals
After reconstructing the GPS signals from the reported mea-
surements, we proceed to establish the correlation between
signal variations and target movements for sensing. The con-
ventional sensing models, e.g., the Fresnel zone model [53],
are not suitable for GPS signals due to the extremely long
signal propagation distance and constantly moving satellite
at a speed of about 4 km/s. In this section, we model the re-
flection of GPS signals and quantify the relationship between
target movements and the induced signal variations. We an-
alyze the model theoretically and validate its effectiveness
through experiments.
Modeling the reflection from a moving object. In this
section, we focus on the reflection model for moving objects.
As shown in Figure 3, a target moves away from a receiver.
The receiver captures signals from the LoS path and the
reflection path 𝑑𝑟 from the target. The horizontal distance
(𝑑) from the GPS receiver to the target can be expressed as

𝑑 = 𝑑𝑟𝑐𝑜𝑠𝜃, (7)
where 𝜃 is incident angle of the GPS signal. Then the phase
difference between the LoS signal 𝑆𝐿𝑜𝑆 and reflection signal
𝑆𝑅𝑒𝑓 𝑙𝑒𝑐𝑡 can be simplified as

𝜙𝑅𝑒𝑓 𝑙𝑒𝑐𝑡 − 𝜙𝐿𝑜𝑆 =
4𝜋𝑑𝑐𝑜𝑠𝜃

𝜆
+ 𝜋, (8)

which is linearly related to the distance 𝑑 as the elevation an-
gle of the satellite is a constant in a short time window (e.g.,
10 s). Due to the constructive and destructive combination
between the LoS signal and the reflection signal illustrated in
Figure 3(a), the signal will manifest repetitive peaks during

(a) Experiment Setup.
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(b) Amplitude changes.

Figure 4: Reflection Verification Experiment: a metal
box moves away from the GPS Receiver.

the process of target movement, as demonstrated in Fig-
ure 3(b). Based on Equation 8, we know the interval between

adjacent two peaks is
𝜆

2𝑐𝑜𝑠𝜃
, allowing us to deduce the dis-

tance of the target’s movement by measuring the number of
observed peaks. The peak signal strength decreases as the
target moves further away from the receiver.

We conduct a benchmark experiment to verify the theoret-
ical observation. We place a metal box on a sliding rail and
move it away from the receiver. We then measure the dis-
tance between two adjacent peaks to validate our model. As
shown in Figure 4 (b), We plotted the measured GPS signal
strength from satellite G19. The average of measured moving
distances between two peaks is 0.105 m, which matches the
theoretical distance (0.101 m) based on Equation (8). For this
reflection model, only the reported signal incident angle is
required for sensing without a need of knowing the satellite’s
detailed status such as moving speed and position.
Reflection from the human body. In the reflection model,
the received signal contains both the reflection signal and LoS
signal. However, due to weaker signal (-120 dBm) compared
to other wireless signals such as Wi-Fi, the GPS reflection
signal can only be detected when reflected from a relatively
large body part, such as the torso. The weaker reflection
signals from arms are hard to be detected. To sense arms and
legs, signals from other satellites which are influenced by
the diffraction effect can be used. Detailed results of experi-
ments on tracking, localization, and activity detection will
be presented in § 5.

3.3 The Diffraction of GPS Signals
In this section, we present the diffraction model for GPS
sensing to quantify the effect of motion activities on sig-
nal variations. Both theoretical analysis and experiment are
employed to validate the proposed model.
Modeling the diffraction effect caused by a moving ob-
ject. The diffraction effect dominates when the human target
is very close to or on the LoS path of the GPS signal. When
a GPS signal wave impinges on the edge of an object (e.g., a
human target), Keller’s Geometrical Theory of Diffraction
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Figure 5: A sensing target moves across the LoS path
between the satellites and the GPS receiver.

(a) Experiment Setup.
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Figure 6: Diffraction Verification Experiment: a metal
box moves across the LoS path between the GPS Re-
ceiver and a GPS satellite.

(GTD) [20] depicts that the occurrence of outgoing rays is
in the shape of a cone. In this work, we focus on the case of
moving objects for sensing.
As shown in Figure 5 (a), considering a scenario that a

target moves across the LoS path between a GPS satellite
and a GPS receiver, GPS signals get diffracted at the edge
of the moving target. When the target moves further, the
object’s Keller Cone due to diffraction appears. Now the GPS
receiver receives a combination of the diffracted signals and
the LoS signals, causing a small variation of the combined
signal strength as the LoS path signal still dominates. When
the target moves further and the LoS path is obstructed, the
strength of the received signal decreases rapidly. During
the process of moving across, the signal strength fluctuates.
As shown in Figure 5, when a GPS receiver is located at
different locations, the signal strength fluctuation pattern
varies. When the GPS receiver is deployed at Location 1,
two peaks appear on the signal strength plot during the
process of moving across the LoS path. When the receiver is
at Location 2, only one peak appears. At Location 3, due to
destructive combination, only one valley can be observed.

We conduct an experiment to see the signal variationwhen
an object moves across the LoS path between the satellite
and the GPS receiver. As shown in the Figure 6(a), we em-
ploy a metal box as the object and the G19 satellite as the
transmitter. The elevation angle of the satellite is about 43
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Figure 7: System pipeline

degrees. When we place the GPS receiver at a distance of
25 cm, 35 cm and 45 cm away from the target moving trajec-
tory, we obtain three plots (i.e., two peaks, one peak and one
valley) as shown in Figure 6(b) which match the theoretical
analysis in Figure 5 well.
The diffraction of the human body. The human body
causes rich diffraction when the body is near to or on the
LoS path [53]. Based on the analysis and experiments in pre-
vious sections, the GPS signal variation pattern can be lever-
aged to infer the motion of the target. The target movement
directions can also be acquired when we employ multiple
satellites for sensing, which will be detailed in § 4.

4 GPSENSE DESIGN
So far, we have established the basic sensing model for the
proposed system based on the GPS signals from a single satel-
lite. There are over one hundred GNSS satellites currently in
use, including GPS, BeiDou, etc. The signals from all these
satellites can be utilized for our sensing tasks. This brings
the concept of distributed sensing and we leverage signals
from multiple satellites to improve the sensing performance
in terms of sensing accuracy and sensing robustness. As
signals from multiple GNSS satellites in the MEOs can be
concurrently received, it is thus important to dynamically
select proper satellites as the signal sources for sensing. In
this section, we also introduce the unique features of GPS
signals and leverage them for sensing. The signal processing
pipeline is presented in Figure 7.

4.1 Sensing with Multiple Satellites
Based on the two sensing models introduced in § 3, we pin-
point three features regarding the sensing capability of GPS
signals related to satellite positions. Benchmark experiments
are employed to validate the identified features.
Feature 1: Satellite on the right/left of the target. The
first factor influencing the GPS signal’s sensing capability
is the azimuth direction of the satellite. Based on the estab-
lished sensing models, signals transmitted from satellites
positioned to the right of the target have a higher proba-
bility of undergoing diffraction/reflection effects caused by
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Figure 9: Combine the GNSS signals from satellites at
different elevation angles.

the right side of the body. Consequently, variations in these
signals contain more information of movements on the right
side of the target. As shown in Figure 8, signals emitted from
satellites located on the right side of the target exhibit supe-
rior sensing capability for movements on the right side of the
body. Similarly, signals from satellites positioned on the left
side can better sense movements on the left side of the body.

As depicted in Figure 8(a), the target faces the GPS receiver
in the direction of 180° (South). The target first waves her
left hand and then waves her right hand. Figure 8(b) displays
the sky plot at the specified timestamp and the signal varia-
tions from satellite B12, positioned to the left of the subject,
and satellite B11, positioned to the right of the subject. It is
evident that when the subject swings her left hand, it solely
affects the signals from satellites positioned to her left, and
similarly when swinging her right hand. As plotted in Fig-
ure 8(b), both amplitude and phase are affected significantly
by the subject’s gestures.
Feature 2: Satellite at high/low elevation angle. Another
feature influencing the sensing capability of GPS signals is
the elevation angle. As illustrated in Figure 9(a), signals from
satellites with higher elevation angles show superior sensing
capability for upper body movement, whereas signals from
satellites with lower elevation angles excel in sensing lower
body movement.
We conduct an experiment to validate this feature, as de-

picted in Figure 9(a), where the subject first swings her hand
and then lifts her leg. The amplitude and signal phase vari-
ations during the process of the movements are shown in
Figure 9(b). When the subject swings her hands, the signals
from a satellite at a high elevation angle (B24) experience
significant influence, while signals from a satellite at a low
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Figure 10: Combine the reflection and diffraction GNSS
signals for sensing.
elevation angle (B26) remain relatively stable. This suggests
that the upper body of the subject is in motion while the
lower part remains static. Similarly, the movement of lifting
leg tends to affect the GPS signals from a satellite with a
lower elevation angle (B26) rather than a satellite with a
higher elevation angle (B24).
Feature 3: Satellite at same/opposite side of the target.
Due to the extremely long transmission distance of GPS
signals, GPS signals are parallel when they arrive at the target
and receiver. When the satellite and the target are at the
same side with respect to the receiver (Satellites in the north
in Figure 10), GPS signals will be influenced by diffraction.
When the satellite and the target are at the opposite side with
respect to the receiver (Satellites in the south in Figure 10),
the signal variation is caused by reflection.

We conduct an experiment to validate this feature. The ex-
periment setup is depicted in Figure 10(a), where the subject
puts her hand on the chest and then puts it back. We plot the
satellite sky plot during the experiment and the amplitude
and phase variations from two selected satellites, namely G6
and G14 as shown in Figure 10(b). Based on the geo-location
relationship, the diffraction model should be applied for G6,
and the reflection model should be applied for G14. As de-
picted in Figure 10(b), both models can sense the target’s
motion. This shows the capability of the proposed system to
employ both models for concurrent sensing.

4.2 Feature-based sensing design
Based on the described features, we propose to combine
these features for device-free activity recognition. While we
employ activity recognition to illustrate the concept, our
system can be applied for other sensing applications such as
respiration monitoring and device-free trajectory tracking
which will be demonstrated with experiments in § 5.

A GPS receiver can receive GPS signals from multiple
satellites in the sky. We can thus generate a sky plot as
depicted in Figure 11 (left). Then, we identify which part of
the target’s body is moving by comparing signal strength
variations caused by target movement at different satellites
using Feature 1 and 2. Take one target swinging her left hand
as the example. We first compare the average signal variation
from satellites on the left side with that from the right side.
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Figure 12: Combine two models
and sector division.

If the value from the left side is higher, our system concludes
that the movement is from the left side of the target, and
vice versa. In the current scenario, with larger left-side signal
variations, we only consider GPS signals from the left side as
shown in Figure 11. Similarly, the system further compares
the average signal variation at high-elevation angles with
that at low-elevation angles. The elevation angle threshold is
set as 40 degrees as illustrated in Figure 11. We observe that
the average signal variation at high-elevation angles exceeds
that at low-elevation angles. The system thus deduces that
the current movement pertains to the upper body part of the
target based on Feature 2.

4.3 Fine-grained Activity Sensing
We employ dynamic time warping (DTW) to compare the col-
lected signal templates with the reference templates stored
in the database for fine-grained activity recognition. How-
ever, the crucial aspect lies in how we combine GPS signals
from multiple remaining satellites after the feature-based
selection for sensing. We still employ the example of a target
swinging her left arm to illustrate the concept. For refer-
ence (database) signal collection, the target is only required
to perform the movement once as the collected GPS signal
contains data from all satellites present in the sky at that
specific timestamp.
Combining the reflection and diffraction models. After
we know the basic information of the movement (e.g., left-
side upper-body movement), we can apply Feature 3 to tell
if the signal from a particular satellite experiences a diffrac-
tion effect or reflection effect. The reference template for
each movement based on the diffraction model is denoted
as 𝑋𝐷 (𝑖), where 𝑖 ∈ 𝑁 and 𝑁 represents the set of left-side
upper-body movements. Similarly, the reference template
for each movement based on the reflection model is denoted
as 𝑋𝑅 (𝑖), where 𝑖 ∈ 𝑁 . We then select the current template
to be classified by identifying the received GPS signal with
the largest variation. The current template is designated as
𝑥𝐷 for the diffraction model and 𝑥𝑅 for the reflection model.
The dynamic time warping (DTW) method is applied as:
argmin

𝑖∈𝑁
| |𝑥𝐷 | |2DTW(𝑥𝐷 , 𝑋𝐷 (𝑖)) + | |𝑥𝑅 | |2DTW(𝑥𝑅, 𝑋𝑅 (𝑖)) .

(9)

Here, | |𝑥𝐷 | |2 and | |𝑥𝑅 | |2 represent the signal variance for
the current template based on the diffraction and reflection
models, respectively. They are multiplied as weights to the
corresponding DTW results, which represent the contribu-
tion of the reflection and diffraction models for sensing.
However, the GNSS satellites are constantly moving. Al-

thoughwe have compensated for the influence of the satellite
movement on signals in § 3, the satellite positions during the
collection of the current template differ from those during
the collection of the reference template. Even for the same
movement, GPS signal variations for satellites at different
positions are distinct. Thus, the signal variations depend not
only on target movement but also on the satellite’s positions,
rendering the basic DTW method ineffective.

To address this issue, we leverage the observation that the
signal variations for satellites within an azimuth and eleva-
tion angle range exhibit similar patterns for the same target
movement. Based on our experiments, the angle range is 30
degrees for the azimuth angle and 20 degrees for the ele-
vation angle. Thus, we subdivide the sky plot into smaller
sectors based on these azimuth and elevation angle ranges
as shown in Figure 12. This ensures that within the same
angle sector, the signal patterns of different satellites for the
same target movement remain consistent.

When collecting the reference template for a specificmove-
ment, we divide satellites based on angle sectors and select
the template with the largest signal variations in each sector,
denoted as 𝑋𝑅

𝑗 (𝑖) and 𝑋𝐷
𝑗 (𝑖), where 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑁 , and 𝑀

represents the set of sectors. Note that the user is required
to perform each movement only once for reference template
collection. Additionally, we allocate a weight to each sector,
where the weight for each sector is denoted as𝑊 𝑅

𝑗 (𝑖) and
𝑊 𝐷

𝑗 (𝑖) ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑁 ) based on signal variations. While the
current template is a set of signals with the largest varia-
tions in different sectors as 𝑥𝑅𝑗 and 𝑥𝐷𝑗 , where 𝑗 ∈ 𝑀 . The
complete algorithm to classify the current template as the
specific movement is presented below:

argmin
𝑖∈𝑁

∑︁
𝑗∈𝑀

| |𝑥𝐷𝑗 | |2𝑊 𝐷
𝑗 (𝑖)DTW(𝑥𝐷𝑗 , 𝑋𝐷

𝑗 (𝑖))

+
∑︁
𝑗∈𝑀

| |𝑥𝑅𝑗 | |2𝑊 𝑅
𝑗 (𝑖)DTW(𝑥𝑅𝑗 , 𝑋𝑅

𝑗 (𝑖)) .
(10)
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Figure 15: Overall human activities sensing accuracy.

5 EVALUATION
5.1 Implementation
In this section, we introduce the implementation of GPSense.
As depicted in Figure 13, we use the Ublox F9P GNSS module
as the default receiver with an update rate of 25 Hz. We
test GPSense on various commercial GNSS receivers with
update rates ranging from 1 Hz to 25 Hz to confirm its broad
applicability. For processing signals, we employ a laptop
equipped with an Intel i7 CPU and 16 GB of memory. The
default setup, as depicted in Figure 14, is simple: a GNSS
receiver is positioned on the ground or roof while the target
performs activities or moves around nearby.

5.2 Human Activity Sensing
In the first experiment, we ask a volunteer to perform eight
different body movements as shown in Figure 15(a) to eval-
uate GPSense’s sensing accuracy for human activities. For
each activity, the target repeats the movement 100 times,
while we take one of the templates as the reference. Figure 15
shows that the sensing accuracy for these eight activities is
about 97.6%. Moreover, we notice that some activities such as
raising the arm cause changes on both reflection and diffrac-
tion features. This observation supports our approach of
combining reflection and diffraction models for sensing.
Sensing with different GNSS receiver modules. As de-
picted in Figure 16(a), we implement GPSense on multiple
different commercial GNSS receiver modules, receive both
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Figure 16: Sensing accuracy with different GNSS re-
ceiver modules.
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Figure 17: GPS sensing with a smartphone.

GPS and BeiDou signals, and conduct experiments to evalu-
ate their performance. These modules are commonly found
in smartwatches (e.g., Ublox M10 [2]), smartphones (e.g.,
Ublox M9N [39]), robots, and unmanned aerial vehicles (e.g.,
Ublox M8N [40]). In each experiment, the target repeats the
same eight activities as in the previous section with each
GNSS receiver modules. These modules operate at the de-
fault sampling rate of 10 Hz, 25 Hz, and 15 Hz to collect
GNSS signals, respectively. The corresponding sensing re-
sults are presented in Figure 16(b), Figure 16(c), and Figure
16(d), with an average sensing accuracy of 97.3%, 97.2%, and
97.4%, respectively, which are similar to the sensing accuracy
of the default GNSS receiver (97.6%). These results demon-
strate that our system can work on various commercial GNSS
receiver modules.
Sensing with commodity smartphones.We implement
GPSense on a commodity smartphone (Google Pixel 4), and
conduct experiments to evaluate the performance. As shown
in Figure 17, we fix the smartphone on a tripod and ask a
volunteer to stand in front of it. The volunteer repeats the
eight body activities defined in Figure 15(a) and the smart-
phone records the GNSS readings with an open-source GNSS
data logger [14]. For the smartphone, the sampling rate of
the GNSS readings is only 1 Hz. We apply the Cubic Spline
Interpolation scheme, which is lightweight and can smoothly
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approximate data points, to increase the sampling rate of
the smartphone-recorded data to 25 Hz. The achieved activ-
ity recognition accuracy is 92.75%, which is lower than that
achieved with the U-blox M10 module (97.2%). We believe
this is mainly due to the much lower sampling rate (1 Hz vs.
25 Hz). This result is still good enough to show that GPSense
can be deployed on smartphones.

5.3 Passive Trajectory Tracking
In addition to activity sensing, our system can also passively
track the trajectory of the target near the GNSS receiver. Our
system does not require the target to carry a GNSS receiver.
Instead, it obtains the trajectory by analyzing signal varia-
tions caused by the target moving.We ask a volunteer to walk
along the pre-defined trajectories including a straight line, a
circle and a rectangle near the GNSS receiver as shown in
Figure 18(a). The key principle behind trajectory tracking is
that the human’s walk affects the LoS paths of different satel-
lites temporally. By combining readings frommany satellites,
our system can achieve decimeter-level passive trajectory
tracking, as shown in Figure 18.
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Figure 21: The recognition accuracy under different
sensing distances.

5.4 Contact-free Respiration Monitoring
The proposed system can also be used to monitor subtle
vital signs of the target, i.e., respiration. Since respiration
monitoring typically happens in indoor environments, we
employ a low-cost GNSS repeater ($3.5) to bring GNSS sig-
nals into the room [9]. The experiment setup is illustrated
in Figure 19(a), where the repeater is deployed 2 m away
from the GNSS receiver. Then we ask a volunteer to sit be-
tween the GNSS repeater and the receiver. We instruct the
user to breathe naturally 30 times and use the GNSS receiver
to collect signals during the process. The extracted signal
amplitude variations based on the proposed signal recon-
struction method, are plotted in Figure 19(b). We can see that
each peak-valley pair corresponds to one respiration cycle,
with 30 peaks and valleys clearly observed. Furthermore, we
instruct the volunteer to breathe naturally for 90 seconds
and count the number of breath cycles. We repeat the ex-
periment ten times. The achieved average respiration rate
estimation error is 0.6 beats per minute (bpm), which falls in
the category of good performance [51].
Respiration monitoring outdoors. We place the GNSS
receiver on the roof and ask the volunteer to sit in front of
it, as shown in Figure 20(a). As illustrated in Figure 20(b),
we utilize two satellites (i.e., GPS G20 and Beidou B19) and
combine the received signals to extract chest movement. The
extracted signal amplitude is plotted in Figure 20(c) with
each peak-valley pair corresponding to one respiration cy-
cle. We instruct the volunteer to breathe naturally for one
minute and count the number of breath cycles. We repeat
the experiment ten times. The overall respiration rate esti-
mation error is 0.57 bpm, demonstrating the effectiveness
of using GNSS signals for respiration sensing in outdoor
environments without the need for GPS repeaters.

5.5 Sensing Capabilities
In this section, we explore the performance boundary of
GPSense, including the sensing coverage and multi-target
sensing. We choose four representative human activities, i.e.,
walking, vertical hand movement, sitting down, and standing
up for the following experiment.
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Figure 23: Three targets.
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Figure 24: The sensing accuracy near tall buildings.

Sensing coverage. In this experiment, the volunteer is asked
to perform activities at various distances away from the
GNSS receiver, as shown in Figure 21(a). The main factor
limiting the coverage is the elevation angle of selected satel-
lites, where a lower elevation angle tends to have a larger
sensing coverage. Therefore, we select a satellite with a low
elevation angle (about 10 degrees) to evaluate the maximum
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Figure 25: The sensing accuracy under different target
sizes.

sensing coverage. The achieved sensing accuracy at different
distances is presented in Figure 21(c). The accuracy decreases
with the distance as the signal strength decreases. However,
a reasonably high accuracy (i.e., 93.1%) can still be achieved
at a distance of 8 m.
Sensing multiple persons. We further evaluate the perfor-
mance of our system in multi-target sensing. We ask three
volunteers to participate in two multi-target scenarios with
different sensing purposes. For the first scenario, our system
recognizes the activity of one volunteer while considering
the other two as interferers. The interferers randomly move
as shown in Figure 22(a). The achieved average sensing accu-
racy is 98.3% as shown in Figure 22(b). Due to a large number
of satellites (usually 20-30) available, there always exist GPS
signals that are influenced only by the target and not by
the interferers. Our system utilizes these clean signals to
mitigate the influence of surrounding interferers on sensing.

In the second scenario, all three volunteers are targets. We
ask the three volunteers to simultaneously perform activities
as illustrated in Figure 23(a), and the sensing performance is
shown in Figure 23(b). The average recognition accuracy is
98.9% when two volunteers concurrently perform gestures.
The average accuracy decreases slightly to 97.2% when three
volunteers concurrently perform gestures. Large number of
distributed satellites enable our system to pick signals only
affected by one single target, making multi-target sensing
possible.
Impact of multipath. We conduct experiments between
two tall buildings to evaluate the performance of GPSense in
rich-multipath environments, as shown in Figure 24(a). To
address performance degradation caused by multipath, we
propose a differential sensing scheme using two GNSS re-
ceivers. For comparison, we first performed experiment with
a single GNSS receiver. The results, shown in Figure 24(b),
indicate a significant drop of performance (an average accu-
racy of 76.9%) in the presence of tall buildings. To address
this issue, we introduce a second receiver as a reference
and employ the differential operation between the two re-
ceivers. The results, depicted in Figure 24(c), demonstrate a
substantial improvement of accuracy (an average accuracy
of 88.9%).
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Figure 26: The sensing accuracy at different locations.
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Figure 27: The sensing accuracy at different times.
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Figure 28: The sensing accuracy in different weathers.

5.6 System Robustness
In this section, we evaluate the robustness of the proposed
system against target variations, diverse experiment envi-
ronments (both indoor and outdoor), different times of a
day, and various weather conditions. Similar to the previous
experiment, we select four representative human activities
for recognition.
Impact of human diversity. Based on the proposed models,
the size of human target may influence the system perfor-
mance. We conduct experiments involving six volunteers
with heights ranging from 160 cm to 185 cm, as detailed
in Figure 25(a) to repeat the four activities: walking, ver-
tical hand movement, sitting down, and standing up near
the GNSS receiver. Each volunteer repeats each activity 50
times, and we use one template of each movement collected
from the 180 cm volunteer as the reference template for all
targets. The sensing accuracy for each target is detailed in
Figure 25(b), from which we can observe slight variations
across targets. The overall accuracy for all targets remains
high (98.6%).
Sensing at different places. One advantage of our system
is that the pervasive GNSS signals are accessible almost ev-
erywhere on Earth. We choose four different experiment

environments: a rooftop, an outdoor park, an indoor space
with open windows (weak GNSS signals as noted in [58]),
and a confined room equipped with a GNSS repeater, as
shown in Figure 26, to evaluate the sensing performance. In
each environment, we instruct a volunteer to repeat the four
different activities 50 times. As shown in Figure 26, the aver-
age sensing accuracies for the four environments are 97.0%,
98.5%, 93.2%, and 99.7%, respectively. The sensing accuracy
in the third environment, i.e., indoor with window-leaked
GPS signals, is slightly lower. This is because the building
obstructs most of the GNSS signals. To enhance the sensing
capability of our system in indoor environments, we can de-
ploy a low-cost GNSS repeater as demonstrated in the fourth
scenario.
Impact of different time.Another advantage of GPSense is
that GNSS satellites transmit signals 24/7, ensuring that the
system’s sensing service is accessible any time. As illustrated
in Figure 27(a), the volunteer is instructed to perform four dif-
ferent activities at three different times during the same day.
We take one template of each movement in the afternoon
as the reference template for all the tests. The experiment
results are presented in Figure 27(b), from which we observe
slightly different sensing accuracies at different time (95.3%,
98.5%, and 98.5%). Since a large number of satellites are avail-
able at any point of time, the sensing performance generally
remains stable over time. However, performance degradation
does sometimes occur due to signal quality variations.
Impact of weather condition. Different from wireless sig-
nals used in existing sensing systems, such as Wi-Fi, GNSS
signals are influenced by weather conditions due to the ex-
tremely long transmission distances. Thus, we test the influ-
ence of different weather conditions on the performance of
our system. As illustrated in Figure 28(a), the volunteer per-
forms four different activities under three different weather
conditions: sunny, cloudy, and snowy. We take one template
of each movement under the sunny weather as the reference
template for all the tests. Figure 28(b) shows the correspond-
ing experiment results, and the average sensing accuracy
under the three weather conditions is 100%, 95,9%, and 94.7%.
These results indicate that weather condition does slightly
affect the sensing performance and best performance can be
achieved in sunny days.
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6 DISCUSSION
Comparison with sensing using other ambient signals.
Employing GNSS signals for sensing exhibits the following
advantages: i) GNSS has a wider coverage while FM [37],
TV [34], and LTE signals [6, 11, 12] do not cover some rural
areas; ii) A GNSS receiver can usually receive signals from
eight or more distributed GPS satellites in various directions.
This provides rich spatial diversity for sensing which other
wireless signals cannot provide; iii) Since a smartphone con-
tains both GNSS and other wireless modules, different wire-
less sensing modalities can be fused for even better sensing
performance; iv) The more accurate synchronization capa-
bility presents GPS sensing with the advantage of fusing
information from different satellites for distributed sensing.
Other satellites. We assess the performance of our system
across various GNSS satellites, including BeiDou and Galileo.
Remarkably, our findings indicate negligible performance
differences when utilizing signals from different navigation
systems, demonstrating the system’s robustness. In addi-
tion to GNSS satellites, various other satellites, including
communication satellites like Starlink and TV satellites, also
continually transmit wireless signals to Earth. We believe
these signals also have the potential to be utilized for sensing.
Limited Number of Activities. The current system only
leverages very basic signal processing methods such as Dy-
namic Time Warping (DTW) for activity classification. We
believe that incorporating machine learning-based classifi-
cation models could increase the number of activities the
system can recognize.

7 RELATEDWORK
Wireless sensing. In recent studies, researchers employ
wireless signals, including Wi-Fi [18, 42], UWB [21, 54], and
sound [24, 55], for diverse sensing applications. These appli-
cations include contact-free activity recognition [35], vital
signs monitoring [41], and passive localization [25]. How-
ever, a majority of sensing systems require a dedicated signal
transmitter, such as mmWave [59], or adversely impact the
original communication function, exemplified by Wi-Fi [50].
To remove the need of dedicated sensing signals, approaches
are explored such as leveraging signals emitted from LTE
towers [11] and signals leaked from power lines [8] for sens-
ing. For the first time, GPSense utilizes the pervasive signals
emitted from GNSS satellites for wireless sensing, which
eliminates the need for a dedicated signal transmitter and
avoids interference on communication.
GPS technologies. GPS signals are originally designed
to provide global positioning services. Billions of devices
rely on GPS signals for localization [23]. Recent efforts are
mainly devoted to enhancing the accuracy and coverage
of GPS [5, 9, 28, 29, 58]. Besides their primary function for

positioning and navigation, researchers also harness GPS sig-
nals for remote sensing and mapping, including atmospheric
monitoring [19, 43] and driver behavior analyzing based on
GPS records [57]. Different from conventional approaches,
our approach utilizes the GPS signal itself as a sensing tool
to passively sense the motion information of the target.
GPS tomography. GPS tomography technologies [3, 33]
also employ GPS signals to sense targets [33] and vapor distri-
bution [3] by analyzing the signal delays. Unlike approaches
that directly measure propagation delay using GNSS raw
data, our method achieves fine-grained sensing by analyzing
the changes in both line-of-sight (LoS), diffracted, and re-
flected signals. This analysis is based on reconstructed GPS
signals instead of the raw measurements.
Diffraction model. The Keller Geometrical Theory of
Diffraction (GTD) elucidates the diffraction phenomenon
arising when an energy wave impinges upon an object
edge [20]. Notably, recent research endeavors involve the
design of a metasurface composed of small metal plates func-
tioning as diffraction edges to exert control over RF signals,
aligning with the principles of the Keller Cone [31]. Fur-
thermore, researchers employ the diffraction model for the
purpose of recognizing letter objects placed behind a wall
using RF signals [32]. In contrast to existing works, our ap-
proach utilizes the diffraction model to analyze the influence
of moving objects on GPS signals for sensing.

8 CONCLUSION
In this work, we introduce the very first wireless sensing
system based on GPS (GNSS) signals from satellites. By re-
constructing the signals based on reported measurements
from commercial GNSS receivers, we make GNSS signals for
sensing possible. Two sensing models are established based
on the unique property of GNSS signals, i.e., the extremely
long transmission distance. We further propose the concept
of distributed sensing to fuse GNSS signals from multiple
satellites to improve sensing performance. GPSense was im-
plemented and evaluated on commercial GNSS receivers. We
believe the proposed new sensing modality can inspire a
large spectrum of sensing applications utilizing distributed
satellites in space.
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